Parametric Linear Fractional Programming for an Unbounded Feasible Region

A. CAMBINI ${ }^{i}$, S. SCHAIBLE ${ }^{2}$, and C. SODINI ${ }^{3}$
${ }^{1}$ Dipartimento di Statistica e Matematica Applicata all' Economia, Universita' di Pisa, Italy;
${ }^{2}$ Graduate School of Management, University of California, Riverside, CA 92521, U.S.A.; ${ }^{3}$ Istituto di Matematica "E. Levi", Universita' di Parma, Italy.

(Received: 13 May 1991; accepted: 19 January 1992)

Abstract

Parametric analysis in linear fractional programming is significantly more complicated in case of an unbounded feasible region. We propose procedures which are based on a modified version of Martos' algorithm or a modification of Charnes-Cooper's algorithm, applying each to problems where either the objective function or the right-hand side is parametrized.

Key words. Fractional programming, parametric programming, unbounded feasible region.

1. Introduction

Linear fractional programs, though not convex, have the same local-global properties as linear (convex) programs. An extensive literature exists for linear fractional programs with fixed values for the parameters in the objective function and in the constraints [8], [36]. In applications however, parameters are sometimes subject to changes. Since the 1960's a good number of articles have appeared in parametric fractional programming [1]-[7], [9], [10], [14]-[20], [22], [24]-[28], [30]-[33], [35]-[45]. Most of these contributions assume a bounded feasible region. In this case the analysis is comparatively easy since the problem is equivalent to a parametric linear program which has thoroughly been researched.

In the unbounded case difficulties arise since a supremum may not be attained at a vertex but along an extreme ray. In this case a vertex following procedure cannot be used to solve the problem.

In [10] an algorithm is suggested for a linear fractional program with an unbounded feasible region where the right-hand side is parametrized. It is based on Dinkelbach's algorithm in fractional programming where numerator and denominator are separated by a parameter.

More recently, Cambini and Sodini [14], [38] proposed a procedure for fractional programs with a parameter in the numerator of the objective function which is based on a modified version of Martos' algorithm by Cambini and Martein [11].

In the present paper we follow this approach. We study the same parametric problem as in [38] by applying a modified Charnes-Cooper algorithm [21] instead. In the second part we present procedures for fractional programs
parametrized on the right-hand side by using either a modified Martos algorithm or a modified Charnes-Cooper algorithm. As shown in Section 4, for a parametrized objective function the algorithm based on Charnes-Cooper's transformation is more suitable whereas for problems with a parameter on the right-hand side the use of the modified Martos algorithm is preferable.

2. The Linear Fractional Program

We consider the following linear fractional program:

$$
\begin{equation*}
\text { (P) } \sup _{x \in X} f(x)=\left(c^{T} x+c_{0}\right) /\left(d^{T} x+d_{0}\right) \tag{1}
\end{equation*}
$$

where $X=\left\{x \in R^{n}: A x=b, x \geq 0\right\}, A$ is a $m \times n$ matrix, $c,, d \in R^{n}, b \in R^{m}, c_{0}$, $d_{0} \in R$. We assume $X \neq \Phi$ and $d^{T} x+d_{0}>0 \quad \forall x \in X$.

For problem (P) the following three cases can occur:
(1) there exists an $x^{\prime} \in X$ such that max $\{f(x): x \in X\}=f\left(x^{\prime}\right)$; in this case a vertex of X is an optimal solution;
(2) $\sup \{f(x): x \in X\}=L<+\infty$, but the supremum is not attained; in this case there exists a vertex x^{\prime} and an extreme ray r such that $\lim _{t \rightarrow+\infty} f\left(x^{\prime}+t r\right)=L$;
(3) $\sup \{f(x): x \in X\}=+\infty$; in this case there exists a vertex x^{\prime} and an extreme ray r such that $\lim _{t \rightarrow+\infty} f\left(x^{\prime}+t r\right)=+\infty$.
Clearly, if X is bounded, only case (1) occurs.

3. Algorithms

In this section we briefly describe two types of algorithms of fractional programming used in the parametric analysis below. These are the algorithm of Martos [29] and its modification by Cambini-Martein [11] and the algorithm by CharnesCooper [21].

Given a vertex x^{\prime} of X and the corresponding base A_{B}, let

$$
\begin{align*}
& c_{N}^{\prime T}=c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N} ; \quad d_{N}^{\prime T}=d_{N}^{T}-d_{B}^{T} A_{B}^{-1} A_{N}, \\
& d_{0}^{\prime}=d_{B}^{T} A_{B}^{-1} b+d_{0}, \quad c_{0}^{\prime}=c_{B}^{T} A_{B}^{-1} b+c_{0}, \tag{2}\\
& \gamma=d_{0}^{\prime} c_{N}^{\prime}-c_{0}^{\prime} d_{N}^{\prime} .
\end{align*}
$$

The algorithm of Martos

Step 0 Compute a basic feasible solution x^{\prime}; go to Step 1.
Step 1 Compute $c_{N}^{\prime}, d_{N}^{\prime}, c_{0}^{\prime}, d_{0}^{\prime}, \gamma$. If $\gamma \leq 0$, stop; x^{\prime} is optimal. Otherwise, select k such that $\gamma_{k}=\max \left\{\gamma_{j}\right\}$; go to Step 2.
Step 2 Compute $y^{k}=A_{B}^{-1} A_{N}^{k}$. If $y^{k} \leq 0$, then stop; $c_{N_{k}}^{\prime} / d_{N_{k}}^{\prime}=\sup \{f(x): x \in X\}$. Otherwise, do a simplex iteration with $x_{N_{k}}$ as entering variable. Let x^{\prime} be the new basic solution; go to Step 1.

The algorithm of Martos guarantees the solution of the problem only if the feasible region is bounded [13], [38].

In order to overcome the limitations of Martos' algorithm in the unbounded case, Cambini and Martein have proposed a modification of it. The modified version of Martos' algorithm MVM differs from Martos' algorithm in the choice of the entering variable for simplex iterations. Only optimal level vertices are used. This modification is sufficient to eliminate the disadvantage of the algorithm of Martos.

In addition to the notation in (2), let

$$
\begin{equation*}
\gamma^{\prime}=c_{N}^{\prime}-f\left(x^{\prime}\right) d_{N}^{\prime} \tag{3}
\end{equation*}
$$

The algorithm MVM of Cambini-Martein

Step 0 Solve problem $P_{0}: \min \left\{d^{T} x+d_{0}: x \in X\right\}$. If the optimal vertex x^{\prime} of P_{0} is unique, then go to Step 1. Otherwise, solve problem $P_{1}: \sup \left\{c^{T} x+\right.$ $\left.c_{0}: x \in X^{\prime}\right\}$ where $X^{\prime}=X \cap\left\{x: d^{T} x=d^{T} x^{\prime}\right\}$. If $\sup \left\{c^{T} x+c_{0}: x \in X^{\prime}\right\}=$ $+\infty$, then stop; $\sup \{f(x): x \in X\}=+\infty$. Otherwise go to Step 1 with x^{\prime} being an optimal vertex of P_{1}.
Step 1 Compute $c_{N}^{\prime}, d_{N}^{\prime}, \gamma^{\prime}$ and $J=\left\{j: \gamma_{j}^{\prime}>0\right\}$. If $J=\Phi$, then stop; x^{\prime} is an optimal solution. Otherwise, select k such that $c_{N_{k}}^{\prime} / d_{N_{k}}^{\prime}=\max \left\{c_{N_{j}}^{\prime} / d_{N_{j}}^{\prime}\right.$: $j \in J\} ;$ go to Step 2.
Step 2 Compute $y^{k}=A_{B}^{-1} A_{N}^{k}$. If $y^{k} \leq 0$, then stop; $c_{N_{k}}^{\prime} / d_{N_{k}}^{\prime}=\sup \{f(x): x \in X\}$. Otherwise, do a simplex iteration with $x_{N_{k}}$ as entering variable. Let x^{\prime} be the new basic solution; go to Step 1.

The algorithm of Charnes-Cooper

By using the transformation of variables $t=1 /\left(d^{T} x+d_{0}\right), y=t x$ Charnes-Cooper have shown that problem (P) is equivalent to the following one:

$$
\begin{array}{ll}
\text { sup } & c^{T} y+c_{0} t \\
& A y-b t=0 \\
& \left(\mathrm{P}^{\prime}\right) \\
& d^{T} y+d_{0} t=1 \tag{4}\\
& y \geq 0 \\
& t>0
\end{array}
$$

If the feasible region X is a bounded set, we have $0<p \leq d^{T} x+d_{0}<+\infty$, $\forall x \in X$, and $t=0$, if permitted, could not occur in the optimal solution of problem (P^{\prime}). Consequently, the constraint $t>0$ is equivalent to the constraint $t \geq 0$, and thus problem (P^{\prime}) turns out to be a linear program which can be solved by any algorithm for linear programs. On the other hand when the feasible region is unbounded, $t=0$ can occur, and when it happens, (P) has a supremum obtained along an extreme ray [23], [34].

4. The Parametric Linear Fractional Program

Sensitivity and parametric analysis for a linear fractional problem with a bounded feasible region is similar to the one for linear programs [38]. However, when the feasible region is unbounded, some difficulties arise in studying the supremum of the problem (P) as a function of a parameter because of case (2) in Section 2 which cannot occur in linear programming.

4.1. PARAMETRIZATION OF THE OBJECTIVE FUNCTION

In this section we consider the parametrization of the numerator in the objective function of a linear fractional program. We point out that a problem with a parameter in the denominator can be reduced to one in the numerator by maximizing $-1 / f(x)$ (assuming $f(x)>0$). Let us consider the following parametric problem:

$$
\begin{equation*}
\operatorname{POBJ}(\theta) \quad z(\theta)=\sup _{x \in X}\left[\left((c+\theta u)^{T} x+c_{0}+\theta u_{0}\right) /\left(d^{T} x+d_{0}\right)\right] \tag{5}
\end{equation*}
$$

for some $\left(u, u_{0}\right) \in R^{n+1}$.
Now we describe a procedure for solving problem $\operatorname{POBJ}(\theta)$ which is based on the algorithm MVM [38]. Following that, we will apply the Charnes-Cooper algorithm to the same problem. First, problem $\operatorname{POBJ}(0)$ is solved by means of algorithm MVM.

Let $x^{\prime}=\left(A_{B}^{-1} b, 0\right)$ be the solution obtained by the algorithm. Clearly, x^{\prime} is an optimal solution of the linear subproblem PL(0) where

$$
\begin{array}{ll}
\operatorname{PL}(\theta) \sup & (c+\theta u)^{T} x+c_{0}+\theta u_{0} \\
& x \in X, \quad d^{T} x=d^{T} x^{\prime} . \tag{6}
\end{array}
$$

Let $c_{N^{\prime}}^{* T}=c_{N^{\prime}}^{T}-c_{B^{\prime}}^{T} A_{B^{\prime}}^{*-1} A_{N^{\prime}}^{*} \leqslant 0$ be the vector of the reduced cost of x^{\prime} for $\operatorname{PL}(0)$. Two cases can occur:
(1) $\gamma^{\prime} \leqslant 0$; then x^{\prime} is a maximum of $\operatorname{POBJ}(0)$;
(2) there exists an index k such that $\gamma_{k}^{\prime}>0, c_{N_{k}}^{\prime} / d_{N k}^{\prime}=\max \left\{c_{N j}^{\prime} / d_{N j}^{\prime}: \gamma_{j}^{\prime}>0\right\}$ and $y^{k}=A_{B}^{-1} A_{N}^{k} \leqslant 0$; in this case $\operatorname{POBJ}(0)$ has a supremum equal to $c_{N k}^{\prime} / d_{N k}^{\prime}$ on the extreme ray from x^{\prime} along y^{k}.

Let the stability set of vertex x^{\prime} denote the set of values of θ such that x^{\prime} is a maximum or the supremum is attained on an extreme ray starting from x^{\prime}. In order to find the stability set of $x^{\prime}, c_{N}^{\prime}, \gamma^{\prime}, c_{0}^{\prime}, c_{N^{\prime}}^{*}$ are considered as a function of the parameter θ. Such functions are denoted by $c_{N}^{\prime}(\theta), \gamma^{\prime}(\theta), c_{0}^{\prime}(\theta), c_{N^{\prime}}^{\prime}(\theta)$. Let

$$
\begin{equation*}
H=\left\{\theta: \gamma^{\prime}(\theta) \leqslant 0\right\}, \quad H^{\prime}=\left\{\theta: c_{N^{\prime}}^{*}(\theta) \leqslant 0\right\} \tag{7}
\end{equation*}
$$

Clearly, $H^{\prime} \supseteq H$.

- If case (1) holds, $H \neq \Phi$ and for $\theta \in H x^{\prime}$ is a maximum of $\operatorname{POBJ}(\theta)$ with $z(\theta)=c_{0}^{\prime}(\theta) / d_{0}^{\prime}$.
- If case (2) holds, let us consider the set $H^{\prime \prime}=\left\{\theta: c_{N k}^{\prime}(\theta) / d_{N k}^{\prime}=\max \left\{c_{N j}^{\prime}(\theta) /\right.\right.$ $\left.\left.d_{N j}^{\prime}: \gamma_{j}^{\prime}(\theta)>0\right\}\right\}$; for $\theta \in H^{\prime}(\theta) \cap H^{\prime \prime}(\theta)$ the supremum is attained along y^{k} with $z(\theta)=c_{N k}^{\prime}(\theta) / d_{N k}^{\prime}$.

Let $H^{\prime}=\left\{\theta: \theta^{\prime} \leqslant \theta \leqslant \theta^{\prime \prime}\right\}$. We will solve problem $\operatorname{PL}\left(\theta^{*}\right)$ where $\theta^{*}=\theta^{\prime}-\varepsilon$ $\left(\theta^{*}=\theta^{\prime \prime}+\varepsilon\right), \varepsilon>0$. Starting from x^{\prime}, by means of one simplex iteration the optimal solution x^{*} of $\operatorname{POBJ}\left(\theta^{*}\right)$ is obtained. x^{*} lies on an edge of X and is not, in general, a vertex of X. We will find the best vertex (in terms of the value of the objective function) which belongs to the edge containing x^{*}. Let $x^{\prime \prime}$ be such a vertex. The stability set of vertex $x^{\prime \prime}$ is adjacent to the stability set of vertex x^{\prime}.

Clearly, the described procedure allows us to find the function $z(\theta)$ through a vertex following examination. As regards to the properties of the paramatric function $z(\theta)$, it is easy to prove that $z(\theta)$ is a convex piecewise linear function [14]. The domain is the union of adjacent stability sets and hence convex. $z(\theta)$ is piecewise linear since a stability set is the union of sets of type H and $H^{\prime \prime}$ which are related to the same vertex of S. Thus $z(\theta)$ is linear for $\theta \in H\left(\theta \in H^{\prime \prime}\right)$ since the denominator is constant there. Convexity can be shown by verifying the defining inequality of convex functions. For details see [14].

As an alternative to the above approach, let us now apply the Charnes-Cooper transformation to the parametric problem $\operatorname{POBJ}(\theta)$. Then the following parametric linear program is obtained:

$$
f(\theta)=\sup \left[(c+\theta u)^{T} y+\left(c_{0}+\theta u_{0}\right) t\right]
$$

$\mathrm{C}-\mathrm{C}(\theta)$

$$
\begin{align*}
& A y-b t=0, \tag{8}\\
& d^{T} y+d_{0} t=1, \quad y \geqslant 0, \quad t \geqslant 0 .
\end{align*}
$$

$C-C(\theta)$ is a standard parametric linear program and can be solved using the usual procedure for parametric linear programming. This method which is based on sensitivity analysis applied to reduced costs involves less operations than the modified Martos algorithm.

If in the optimal solution $\left(y^{\prime}, t^{\prime}\right), t^{\prime}$ is greater than zero, then it is possible to transform the results into the space of variables x, namely $x^{\prime}=y^{\prime} / t^{\prime}$. This is not possible when $t^{\prime}=0$. In this case the above transformation cannot be used. Let B^{\prime} be the set of basic variables of the optimal solution of $\mathrm{C}-\mathrm{C}(\theta)$ and

$$
A^{\prime}=\left[\begin{array}{cc}
A & -b \\
d^{T} & d_{0}
\end{array}\right], \quad y_{B^{\prime}}=A_{B^{\prime}}^{\prime-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad u_{B^{\prime}}=A_{B^{\prime}}^{\prime-1}\left[\begin{array}{c}
-b \\
d_{0}
\end{array}\right] .
$$

Further, let $t_{0}=y_{B_{k}^{\prime}} / u_{B_{k}^{\prime}}=\min \left\{y_{B_{i}^{\prime}}: u_{B_{i}^{\prime}}>0\right\}$ and set $B=B^{\prime} \backslash\{k\}$. It is easy to see [12] that the supremum of $z(\theta)$ is attained along the extreme ray starting from the vertex $x_{B}=\left(y_{B}-t_{0} u_{B}\right) / t_{0}$ in the direction $d_{B}=-y_{B} / y_{B_{k}^{\prime}}$. Clearly, these results allow us to determine the function $z(\theta)$ by solving problem $\mathrm{C}-\mathrm{C}(\theta)$.

EXAMPLE 1. Let us consider the following numerical example

$$
\begin{aligned}
z(\theta)= & \sup \left\{\left[(-1+\theta) x_{1}+(5-2 \theta) x_{2}\right] /\left(x_{1}+2\right)\right\} \\
& -x_{1}+x_{2} \leqslant 2, \quad x_{1}-2 x_{2} \leqslant 4 \\
& x_{1}, x_{2} \geqslant 0
\end{aligned}
$$

By using the Charnes-Cooper transformation we obtain the following parametric LP:

$$
\begin{aligned}
f(\theta)= & \sup \left\{(-1+\theta) y_{1}+(5-2 \theta) y_{2}\right\} \\
& -y_{1}+y_{2}-2 t+y_{3}=0 \\
& y_{1}-2 y_{2}-4 t+y_{4}=0 \\
& y_{1}+2 t=1 \\
& y_{1}, y_{2}, y_{3}, y_{4}, t \geqslant 0
\end{aligned}
$$

The optimal solution for $\theta=0$ is given by the following simplex Table I:

Table I

		y_{1}	y_{2}	y_{3}	y_{4}	t
θ	2	1	0	2	0	0
$-z$	-5	-1	0	-5	0	0
t	$1 / 2$	$1 / 2$	0	0	0	1
y_{2}	1	0	1	1	0	0
y_{4}	4	3	0	2	1	0

Stability set: $-1+\theta \leqslant 0,-5+2 \theta \leqslant 0$ imply $\theta \leqslant 1 ; z(\theta)=5-2 \theta, \theta \leqslant 1$ with the optimal solution ($y_{1}=0, y_{2}=1, t=1 / 2$). In the space of the variables x we have $\left(x_{1}=0, x_{2}=2\right)$.

For $\theta>1$ the reduced cost of variable y_{1} becomes positive and y_{1} substitutes t in the basis. The new Table II is the following:

Table II

		y_{1}	y_{2}	y_{3}	y_{4}	t
θ	1	0	0	2	0	-2
$-z$	-4	0	0	-5	0	2
y_{1}	1	1	0	0	0	2
y_{2}	1	0	1	1	0	0
y_{4}	1	0	0	2	1	-6

Stability set: $2-2 \theta \leqslant 0,-5+2 \theta \leqslant 0$ imply $1 \leqslant \theta \leqslant 5 / 2 ; z(\theta)=4-\theta, 1 \leqslant \theta \leqslant 5 / 2$ with the optimal solution $\left(y_{1}=1, y_{2}=1, t=0\right)$. In the space of the variables x we have $t_{0}=\min \{1 / 2\}=1 / 2, x_{2}=2, x_{4}=(1+(1 / 2) 6) /(1 / 2)=8, d_{B}=(-1,-1)$.

For $\theta>5 / 2$ the reduced cost of variable y_{3} becomes positive and y_{3} substitutes y_{4} in the basis. The new Table III is the following:

Table III

		y_{1}	y_{2}	y_{3}	y_{4}	t
θ	0	0	0	0	-1	4
$-z$	$-3 / 2$	0	0	0	$5 / 2$	-13
y_{1}	1	1	0	0	0	2
y_{2}	$1 / 2$	0	1	0	$-1 / 2$	3
y_{3}	$1 / 2$	0	0	1	$1 / 2$	-3

Stability set: $5 / 2-\theta \leqslant 0,-13+4 \theta \leqslant 0$ imply $5 / 2 \leqslant \theta \leqslant 13 / 4 ; \quad z(\theta)=3 / 2$, $5 / 2 \leqslant \theta \leqslant 13 / 4$ with the optimal solution $\left(y_{1}=1, y_{2}=1 / 2, t=0\right)$. In the space of the variables x we have $t_{0}=\min \{1 / 2,1 / 6\}=1 / 6, x_{1}=(1-(1 / 6) 2) /(1 / 6)=4$, $x_{3}=(1 / 2+(1 / 6) 3) /(1 / 6)=6, d_{B}=(-2,-1)$.

For $\theta>13 / 4$ the reduced cost of variable t becomes positive and t substitutes y_{2} in the basis. The new Table IV is the following:

Table IV

		y_{1}	y_{2}	y_{3}	y_{4}	t
θ	$-2 / 3$	0	$-4 / 3$	0	$-1 / 3$	0
$-z$	$2 / 3$	0	$13 / 3$	0	$1 / 3$	0
y_{1}	$2 / 3$	1	$2 / 3$	0	$1 / 3$	0
t	$1 / 6$	0	$1 / 3$	0	$-1 / 6$	1
y_{3}	1	0	1	1	0	0

Stability set: $13 / 3-4 / 3 \theta \leqslant 0,1 / 3-1 / 3 \theta \leqslant 0$ imply $\theta \geqslant 13 / 4 ; \quad z(\theta)=-2 / 3+$ $2 / 3 \theta, \theta \geqslant 13 / 4$ with the optimal solution $\left(y_{1}=2 / 3, y_{3}=1, t=1 / 6\right)$. In the space of the variables x we have $x_{1}=4, x_{3}=6$.

The function $z(\theta)$, depicted in Figure 1, is the following:

$$
z(\theta)= \begin{cases}5-2 \theta & \theta \leqslant 1 \\ 4-\theta & 1 \leqslant \theta \leqslant 5 / 2 \\ 3 / 2 & 5 / 2 \leqslant \theta \leqslant 13 / 4 \\ -2 / 3+2 / 3 \theta & \theta \geqslant 13 / 4\end{cases}
$$

4.2. PARAMETRIZATION OF THE RIGHT-HAND SIDE

We now consider the following parametric linear fractional program:

$$
\begin{equation*}
\text { PRHS } z(\theta)=\sup _{x \in X(\theta)}\left(c^{T} x+c_{0}\right) /\left(d^{T} x+d_{0}\right) \tag{9}
\end{equation*}
$$

where $X(\theta)=\left\{x \in R^{n}: A x=b+\theta b^{*}, x \geqslant 0\right\}$ for some $b^{*} \in R^{m}$. We assume $d^{T} x+d_{0}>0 \quad \forall x \in X(\theta), \forall \theta$.

This problem was solved in [10] by using the fractional programming algorithm of Dinkelbach in which numerator and denominator are separated by a parameter. Neither in Martos' nor in Charnes-Cooper's method such as parameter is needed. As in Section 4.1, we contrast the use of these latter two methods.

Fig. 1.

If we apply the Charnes-Cooper transformation to problem PRHS we obtain

$$
\begin{align*}
f(\theta)= & \sup \left[c^{T} y+c_{0} t\right] \\
\mathrm{C}-\mathrm{C}-\mathrm{RHS} \quad & A y-\left(b+\theta b^{*}\right) t=0 \tag{10}\\
& d^{T} y+d_{0} t=1, \quad y \geqslant 0, \quad t \geqslant 0
\end{align*}
$$

C-C-RHS is a parametric linear program with the parameter in the column of the matrix corresponding to the variable t. To solve such a problem is not easy. For this reason we investigate the application of the algorithm MVM to problem PRHS instead.

Given a basis A_{B}, let us define:

$$
\begin{aligned}
& c_{N}^{\prime T}=c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}, \quad c_{0}^{\prime}(\theta)=c_{0}+c_{B}^{T} A_{B}^{-1}\left(b+\theta b^{*}\right) \\
& d_{N}^{\prime T}=d_{N}^{T}-d_{B}^{T} A_{B}^{-1} A_{N}, \quad d_{0}^{\prime}(\theta)=d_{0}+d_{B}^{T} A_{B}^{-1}\left(b+\theta b^{*}\right) \\
& x_{B}(\theta)=A_{B}^{-1} b+\theta A_{B}^{-1} b^{*}, \quad \gamma(\theta)=d_{0}^{\prime}(\theta) c_{N}^{\prime}-c_{0}^{\prime}(\theta) d_{N}^{\prime}
\end{aligned}
$$

The vertex associated with the basis A_{B} is optimal if the following conditions hold:

$$
\begin{array}{ll}
x_{B}(\theta) \geqslant 0 & \text { (feasibility) } \\
\gamma(\theta) \leqslant 0 & \text { (optimality) }
\end{array}
$$

The supremum is attained on an extreme ray starting from the vertex $x_{B}(\theta)$ if the following conditions hold:

$$
\begin{aligned}
& x_{B}(\theta) \geqslant 0 \\
& \gamma_{k}(\theta)>0 \\
& A_{B}^{-1} A_{N}^{k} \leqslant 0 \\
& c_{N k}^{\prime} / d_{N k}^{\prime}=\max \left\{c_{N_{j}}^{\prime} / d_{N j}^{\prime}: \quad \gamma_{j}(\theta)>0\right\}
\end{aligned}
$$

Suppose that problem PHRS is solved by means of algorithm MVM for a given value of θ and let A_{B} be the basis obtained．

If the vertex $x_{B}(\theta)$ is optimal，then define

$$
\begin{aligned}
& H^{\prime}=\left(\theta: x_{B}(\theta) \geqslant 0\right\}, \quad H^{\prime \prime}=\{\theta: \gamma(\theta) \leqslant 0\} \\
& H^{*}=H^{\prime} \cap H^{\prime \prime}=\left\{\theta: \theta^{\prime} \leqslant \theta \leqslant \theta^{\prime \prime}\right\}
\end{aligned}
$$

Clearly，for $\theta \in H^{*}$ the vertex $x_{B}(\theta)$ is optimal．For $\theta \notin H^{*}$ different cases can occur：
（1）feasibility is maintained while optimality is lost（i．e．$x_{B}(\theta) \geqslant 0$ while $\gamma(\theta) \neq$ 0 ）；
（2）feasibility is lost while optimality is maintained（i．e．$x_{B}(\theta) \neq 0$ while $\gamma(\theta) \leqslant$ 0 ）；
（3）feasibility and optimality are lost（i．e．$x_{B}(\theta) \neq 0$ and $\left.\gamma(\theta) \neq 0\right)$ ．
In case（1）there are two possibilities：（i）the supremum is attained along an extreme ray from $x_{B}(\theta)\left(\gamma_{k}(\theta)>0, A_{B}^{-1} A_{N}^{k} \leqslant 0\right)$ and nothing must be done；（ii） the new optimal solution is an adjacent vertex of $x_{B}(\theta)$ which can be obtained by a primal simplex iteration．In case（2）the new optimal solution（if any）can be obtained by applying the dual simplex algorithm．In case（3）it is necessary to restart either feasibility or optimality and it is also necessary to maintain the optimality of level．This can be done by simplex iterations（dual or primal）until case（1）or（2）is obtained．

If the supremum is attained along an extreme ray from the vertex $x_{B}(\theta)$ ，then define

$$
\begin{aligned}
& H^{\prime}=\left\{\theta: x_{B}(\theta) \geqslant 0\right\}, \quad H^{\prime \prime}=\left\{\theta: c_{N k}^{\prime} / d_{N k}^{\prime}=\max \left\{c_{N j}^{\prime} / d_{N j}^{\prime}: \gamma_{j}(\theta)>0\right\}\right. \\
& H^{*}=H^{\prime} \cap H^{\prime \prime}=\left\{\theta: \theta^{\prime} \leqslant \theta \leqslant \theta^{\prime \prime}\right\}
\end{aligned}
$$

Clearly，for $\theta \in H^{*}$ the extreme ray y^{k} from $x_{B}(\theta)$ is optimal．For $\theta \notin H^{*}$ different cases can occur：
（4）feasibility is maintained and optimality is obtained（i．e．$\left.x_{B}(\theta) \geqslant 0, \gamma(\theta) \leqslant 0\right)$ ；
（5）feasibility is maintained while optimality is lost（i．e．$x_{B}(\theta) \geqslant 0$ while $\gamma(\theta) ⿻ 木 一 ⿱ 䒑 未$ 0 ）；
（6）feasibility and optimality are lost（i．e．$x_{B}(\theta) \neq 0$ and $\left.\gamma(\theta) \neq 0\right)$ ．
In case（4）clearly $x_{B}(\theta)$ is an optimal vertex and nothing must be done．Case （5）is like case（1）．Finally，case（6）is like case（3）．

The proposed procedure is able to determine the function $z(\theta)$ for all values of θ.

EXAMPLE 2．Let us consider the following numerical example

$$
\begin{aligned}
z(\theta)= & \sup \left[\left(-x_{1}+5 x_{2}\right) /\left(x_{1}+2\right)\right] \\
& -x_{1}+x_{2} \leqslant 2+\theta, \quad x_{1}-2 x_{2} \leqslant 4-8 \theta, \\
& x_{1}, x_{2} \geqslant 0
\end{aligned}
$$

First，we solve the problem for $\theta=0$ ．We obtain：

Table V

		x_{1}	x_{2}	x_{3}	x_{4}
N	$-10-5 \theta$	4	0	-5	0
D	-2	1	0	0	0
x_{2}	$2+\theta$	-1	1	1	0
x_{4}	$8-6 \theta$	-1	0	2	1

Then $\gamma(\theta)=(-2-5 \theta,-10) \leqslant 0, H^{\prime \prime}=\{\theta: \theta \geqslant-2 / 5\}, x_{B}(\theta)=(2+\theta, 8-6 \theta) \geqslant$ $0, H^{\prime}=[-2,4 / 3]$, hence $H^{*}=[-2 / 5,4 / 3]$. Then for $\theta \in H^{*} x^{0}=(0,2+\theta)$ is optimal and $z(\theta)=(10+5 \theta) / 2$.

For $\theta>4 / 3$ we obtain Table VI:

Table VI

		x_{1}	x_{2}	x_{3}	x_{4}
N	$22-29 \theta$	0	0	3	4
D	$6-6 \theta$	0	0	2	1
x_{2}	$-6+7 \theta$	0	1	-1	-1
x_{1}	$-8+6 \theta$	1	0	-2	-1

Then $\gamma(\theta)=(26-40 \theta,-2-5 \theta) \leqslant 0, H^{\prime \prime}=\{\theta: \theta \geqslant 13 / 20\}, x_{B}(\theta)=(-6+7 \theta$, $-8+6 \theta) \geqslant 0, H^{\prime}=\{\theta: \theta \geqslant 4 / 3\}$, hence $H^{*}=\{\theta: \theta \geqslant 4 / 3\}$. Then for $\theta \in H^{*} x^{1}=$ $(-8+6 \theta,-6+7 \theta)$ is optimal and $z(\theta)=(29 \theta-22) /(6 \theta-6)$.

For $\theta<-2 / 5$ it follows from Table V that for $-2 \leqslant \theta \leqslant-2 / 5$ the solution remains feasible while the reduced cost of variable x_{1} is positive and the relative column is nonpositive. This implies that the supremum is reached along the following extreme ray:

$$
\left[\begin{array}{l}
x_{2} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2+\theta \\
8-6 \theta
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] x_{1} \quad \text { with } \quad z(\theta)=4
$$

For $\theta<-2$ with a pivot transformation in Table V we obtain Table VII.

Table VII

		x_{1}	x_{2}	x_{3}	x_{4}
N	$-2-\theta$	0	4	-1	0
D	θ	0	1	1	0
x_{1}	$-2-\theta$	1	-1	-1	0
x_{4}	$6-7 \theta$	0	-1	1	1

Then $\gamma(\theta)=(-5 \theta-2,-2), \gamma_{2}(\theta)>0$ for $\theta<-2, x_{B}(\theta)=(-2-\theta, 6-7 \theta) \geqslant 0$, $H^{\prime}=\{\theta: \theta \leqslant-2\}, H^{*}=H^{\prime}$. Thus for $\theta \in H^{*}$ the supremum is reached along the following extreme ray:

Fig. 2.

$$
\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2-\theta \\
6-7 \theta
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] x_{2} \quad \text { with } \quad z(\theta)=4
$$

The function $z(\theta)$ is now completely described. In Figure $2 z(\theta)$ is depicted. The function $z(\theta)$ is quasiconcave as it was shown for problem PRHS in general in [10].

5. Conclusion

Parametric linear fractional programming with an unbounded feasible region poses some difficulties not arising in the bounded case. Two types of algorithms have been applied to two kinds of parametric fractional programs. It turns out that a procedure based on the Charnes-Cooper transformation is more suitable in case of a parametrized objective function whereas a procedure based on the modified Martos algorithm is preferable in case of a parametrized right-hand side.

Acknowledgement

Thanks are due to Zhong-guo Zhou, University of California, Riverside for assisting us in providing an extensive up-to-date bibliography on parametric fractional programming.

References

1. Aggarwal, S. P. (1966), Stability of the Solution to a Linear Fractional Functional Programming Problem, Zeitschrift für Angewandte Mathematik und Mechanik 46, 343-349.
2. Aggarwal, S. P. (1968), Parametric Linear Fractional Functional Programming, Metrika 12, 106-114.
3. Aggarwal, S. P. (1970), Analysis of the Solution to a Linear Fractional Functional Programming Problem, Metrika 16, 9-26.
4. Aggarwal, S. P. (1972), Variation in Parameters of Quadratic Fractional Functional Programming, Revue Belge de Statistique d'Informatique et de Recherche Operationelle 11, 3-14.
5. Arora, S. R. and S. P. Aggarwal (1977), Linear Fractional Functional Programming with a Parameter in an Activity Vector, Economic Computation and Economic Cybernetics and Research 3, 37-56.
6. Artjuhin, A.V. (1973), An Algorithm for the Solution of the Distribution Problem of Parametric Fractional Linear Programming (Russian), Izdat, "Ilim", Frunze, 30-36.
7. Artjuhin, A. V. (1973), Some Application of Parametric Fractional Linear Programming (Russian), Izdat, "Ilim", Frunze, 37-54.
8. Avriel, M., Diewert, W. E., Schaible, S., and I. Zang (1988), Generalized Concavity, Plenum Publishing Corporation, New York.
9. Bakhshi, H. C. (1979), Sensitivity Analysis in Linear Fractional Functional Programming Problem with Extreme Point Restriction, SCIMA, Journal of Management Science and Applied Cybernetics 8, 6-15.
10. Bitran, G. and T. L. Magnanti (1976), Duality and Sensitivity Analysis for Fractional Programs, Opns. Res. 24, 675-699.
11. Cambini, A. and L. Martein (1985), A Modified Version of Martos's Algorithm, Methods of Oper. Res. 53, 33-44.
12. Cambini, A. and L. Martein (1992), Equivalences in Linear Fractional Programming, Optimization 23, 41-51.
13. Cambini, A. and C. Sodini (1983), Sulla equivalenza di alcuni algoritmi di programmazione lineare frazionaria, Report A-105, Dip. di Mat., Univ. di Pisa.
14. Cambini, A. and C. Sodini (1987), On Parametric Linear Fractional Programs, Dip. di Stat. e Mat. Appl. all'Ec., Univ. di Pisa, Report n. 6.
15. Cernov, J. P. (1970), Several Problems of Parametric Fractional Linear Programming (Russian), Optimal Planirovanie Vyp. 16, 98-111.
16. Cernov, J. P. (1970), A Certain Problem of Parametric Fractional Linear Programming (Russian), Izvestia Akademii Nauk Kirgizskoi SSR 3, 20-27.
17. Chadha, S. S. (1971), A Simple Class of Parametric Linear Fractional Programs with Variable Coefficients, Revue de la Faculté des Science de l'Université d'Istanbul, Serie A36, 7-13.
18. Chadha, S. S. (1971), A Linear Fractional Functional Program with a Two Parameter Objective Function, Zeitschrift für Angewandte Mathematik und Mechanik 51, 479-481.
19. Chadha, S. S. and S. Shivpuri (1973), A Simple Class of Parametric Linear Fractional Functional Programming, Zeitschrift für Angewandte Mathematik und Mechanik 53, 644-646.
20. Chadha, S. S. and S. Shivpuri (1978), Multiparametric Linear Fractional Functional Programming, Cahiers du Centre d'Etudes de Recherche Operationelle 20, 103-108.
21. Charnes, A. and W. W. Cooper (1962), Programming with Linear Fractional Functionals, Nav. Res. Log. Quart. 9, 181-186.
22. Craven, B.D. (1981), Duality for Generalized Convex Fractional Programs, Generalized Concavity in Optimization and Economics, ed. by Schaible, S. and W. T. Ziemba, Academic Press, New York, 473-489.
23. Gasparotto, G. (1987), On the Charnes-Cooper Transformation in Linear Fractional Programming, Dip. di Stat. e Mat. Appl. all'Ec., Univ. di Pisa, Report n. 3.
24. Gupta, R. K. (1973), A Simple Class of Parametric Linear Fractional Functional Programming Problems, Cahiers du Centre d'Etudes de Recherche Operationelle 15, 185-196.
25. Gupta, R. K. (1974), A Simple Class of Parametric Linear Fractional Functional Programming Problems, Erratum. Cahiers du Centre d'Etudes de Recherche Operationelle 16, 179.
26. Kornbluth, J. S. H. and G. R. Salkin (1972), A Note on the Economic Interpretation of the Dual Variables in Linear Fractional Programming, Zeitschrift für Angewandte Mathematik und Mechanik 52, 175-178.
27. Lange, E. G. and A. V. Artjuhin (1974), Some Problems of Linear Fractional Parametric Programming (Russian), Mathematical Methods for the Solution of Mathematical Economic Problems, Izdat, "Ilim", Frunze, 5-19.
28. Manjurov, D. M. (1968), Investigation of a Linear Fractional Programming Problem When Certain Parameters Are Varied (Russian), Izd. Akad. Nauk Azerbaidzan SSR Ser. Fiz Tehn. Mat. Nauk, 89-95.
29. Martos, B. (1964), Hyperbolic Programming, Nav. Res. Log. Quart. 11, 135-155.
30. Pogodin, V. P. (1974), Study of a Certain Parametric Linear Fractional Programming Problem (Russian), Mathematical Methods in Economics Research, Izdat, "Nauka", Moskow, 44-50.
31. Prabha, S. (1982), Parametrizing a Column Vector in a Linear Fractional Programming Problem, J. of Information and Optimization Sci. 3, 290-304.
32. Saxena, P. C. and S. P. Aggarwal (1980), Parametric Linear Fractional Functional Programming, Economic Computation and Economic Cybernetics Studies and Research 14, 87-97.
33. Schaible, S. (1973), Fractional Programming: Transformations, Duality and Algorithmic Aspects, Technical Report 73-9, Operations Research House, Stanford University, November.
34. Schaible, S. (1974), Parameter-Free Convex Equivalent and Dual Programs of Fractional Programs, Zeitschrift für Operations Research 18, 187-196.
35. Schaible, S. (1975), Marginalwerte in der Quotientenprogrammierung, Zeitschrift für Betriebswirtschaft 45, 649-658.
36. Schaible, S. (1978), Analyse und Anwendungen von Quotientenprogrammen, ein Beitrag zur Planung mit Hilfe der nichtlinearen Programmierung, Mathematical Systems in Economics 42, Hain-Verlag, Meisenheim.
37. Smyreva, N. V. (1974), An Algorithm for a Parametric Linear Fractional Programming Problem (Russian), Optimizacija 14, 83-102.
38. Sodini, C. (1990), Equivalence and Parametric Analysis in Linear Fractional Programming, Generalized Convexity and Fractional Programming with Economic Applications, A. Cambini et al. (eds.), Proceedings, Pisa, Italy, 1988, Springer-Verlag, Heidelberg-New York, 143-154.
39. Swarup, K. (1968), On Varying All the Parameters in a Linear Fractional Functionals Programming Problem, Metrika 13, 196-205.
40. Tammer, E. C. (1977), Parametrische hyperbolische Optimierungsprobleme mit Parametern in der Zielfunktion, Mathematische Operationsforschung und Statistik, Series Optimization 8, 207225.
41. Varma, G. K. (1969), Some Aspects of Parametric Linear Fractional Programming, Journal of the Indian Statistical Association 7, 162-167.
42. Varma, G. K. (1972), General Parametric Linear Fractional Programming, Metrika 19, 11-17.
43. Varma, G. K. (1972), On Parametric Linear Fractional Programming, Trabajos Estadistica de Investigacion Operativa 23, 149-157.
44. Wadhwa, V. (1972), Linear Fractional Programs with Variable Coefficients, Cahiers du Centre d'Etudes de Recherche Operationelle 14, 223-232.
45. Wadhwa, V. (1974), Parametric Linear Fractional Programming, SCIMA, Journal of Management Science and Applied Cybernetics 3, 21-29.
46. Wagner, H. M. and J. S. C. Yuan (1968), Algorithm Equivalence in Linear Fractional Programming, Management Science 14, 301-306.
