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Abstract.  Parametric analysis in linear fractional programming is significantly more complicated in 
case of an unbounded feasible region. We propose procedures which are based on a modified version 
of Martos' algorithm or a modification of Charnes-Cooper's algorithm, applying each to problems 
where either the objective function or the right-hand side is parametrized. 
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1. Introduction 

Linear fractional programs, though not convex, have the same local-global 
properties as linear (convex) programs. An extensive literature exists for linear 
fractional programs with fixed values for the parameters in the objective function 
and in the constraints [8], [36]. In applications however, parameters are some- 
times subject to changes. Since the 1960's a good number of articles have 
appeared in parametric fractional programming [1]-[7], [9], [10], [14]-[20], [22], 
[24]-[28], [30]-[33], [35]-[45]. Most of these contributions assume a bounded 
feasible region. In this case the analysis is comparatively easy since the problem is 
equivalent to a parametric linear program which has thoroughly been researched. 

In the unbounded case difficulties arise since a supremum may not be attained 
at a vertex but along an extreme ray. In this case a vertex following procedure 
cannot be used to solve the problem. 

In [10] an algorithm is suggested for a linear fractional program with an 
unbounded feasible region where the right-hand side is parametrized. It is based 
on Dinkelbach's algorithm in fractional programming where numerator and 
denominator are separated by a parameter. 

More recently, Cambini and Sodini [14], [38] proposed a procedure for 
fractional programs with a parameter in the numerator of the objective function 
which is based on a modified version of Martos' algorithm by Cambini and 
Martein [11]. 

In the present paper we follow this approach. We study the same parametric 
problem as in [38] by applying a modified Charnes-Cooper  algorithm [21] 
instead. In the second part we present procedures for fractional programs 
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parametrized on the right-hand side by using either a modified Martos algorithm 
or a modified Charnes-Cooper  algorithm. As shown in Section 4, for a paramet- 
rized objective function the algorithm based on Charnes-Cooper ' s  transformation 
is more suitable whereas for problems with a parameter  on the right-hand side the 
use of the modified Martos algorithm is preferable. 

2. The Linear Fractional Program 

We consider the following linear fractional program: 

(P) sup f(x)  = (crx + Co)/(d~x + do) ,  (1) 
x E X  

where X = {x E R n: A x  = b, x >- 0}, A is a m • n matrix, c,, d E R n, b E R m, Co, 

d o E R. We assume X # �9 and drx  + d o > 0 Vx E X. 
For  problem (P) the following three cases can occur: 

(1) there exists an x ' C X  such that max {f(x): x C X }  = f ( x ' ) ;  in this case a 
vertex of X is an optimal solution; 

(2) sup{f(x):  x E X} = L < +~ ,  but the supremum is not attained; in this case 
there exists a vertex x '  and an extreme ray r such that lim,~+~ f ( x '  + tr) = L;  

(3) sup( f (x) :  x ~ X} = +~;  in this case there exists a vertex x '  and an extreme 
ray r such that lira,__,+= f ( x '  + tr) = +o~. 

Clearly, if X is bounded, only case (1) occurs. 

3. Algorithms 

In this section we briefly describe two types of algorithms of fractional program- 
ming used in the parametric analysis below. These are the algorithm of Martos 
[29] and its modification by Cambini-Martein [11] and the algorithm by Charnes-  
Cooper  [21]. 

Given a vertex x '  of X and the corresponding base A a, let 

T T - 1  . T - 1  
CfV T =  C N -- c B A  B A N ,  d~v T :  d r  - d B A  B A N , 

t T -1  
d o = d B A  B b + d  o , c o - ' - cTA[~ lb+c  o,  (2) 

Y = d ~ c ~ -  c~d;v. 

The algorithm of Martos 
Step 0 Compute a basic feasible solution x ' ;  go to Step 1. 
Step 1 Compute c;v, d;v, c~, d~, y. If y -< 0, stop; x '  is optimal. Otherwise, select 

k such that Yk = max{yj}; go to Step 2. 
Step 2 Compute yk = A ~ I A ~ .  If yk --<0, then stop; c;vk/d;v k = sup{f(x):  x E X}. 

Otherwise, do a simplex iteration with XNk as entering variable. Let  x '  be 
the new basic solution; go to Step 1. 
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The algorithm of Martos guarantees the solution of the problem only if the 
feasible region is bounded [13], [38]. 

In order to overcome the limitations of Martos' algorithm in the unbounded 
case, Cambini and Martein have proposed a modification of it. The modified 
version of Martos' algorithm MVM differs from Martos' algorithm in the choice 
of the entering variable for simplex iterations. Only optimal level vertices are 
used. This modification is sufficient to eliminate the disadvantage of the algorithm 
of Martos. 

In addition to the notation in (2), let 

' - f (  )d  N ~ / t  ~ C N X '  . 

The algorithm MVM of Cambini-Martein 
Step 0 

Step 1 

Step 2 

(3) 

Solve problem Po : min{ drx  + do : x @ X}. If the optimal vertex x'  of Po is 
unique, then go to Step 1. Otherwise, solve problem Pa: sup{ crx + 
Co: x E X'} where X'  = X A {x: drx = drx '} .  If sup{crx + Co: x ~ X'} = 
+ %  then stop; sup{f(x): x E X} = +~.  Otherwise go to Step 1 with x'  
being an optimal vertex of P~. 

t t r ~  Compute Co, dN, y '  and J = {j: Yi 0). If J =  ~ ,  then stop; x '  is an 
optimal solution. Otherwise, select k such that C;v]duk=maX{Cu/duj"  
j E J } ; g o  to Step 2. 
Compute yk = -1 k y~ , , _ A B A N. If - 0 ,  then stop; C N ] d N - - S u p { f ( x ) : x E X  }. 
Otherwise, do a simplex iteration with XN~ as entering variable. Let x'  be 
the new basic solution; go to Step 1. 

The algorithm of Charnes-Cooper 
By using the transformation of variables t = 1/(d~x + do), y = tx Charnes-Cooper  
have shown that problem (P) is equivalent to the following one: 

sup cry  + Cot 

A y  - bt = 0 

(P') d~y + dot = 1 (4) 

y - - 0  

t > 0  

If the feasible region X is a bounded set, we have 0 < p - - < d r x +  d o < +  % 
Vx ~ X, and t = 0, if permitted, could not occur in the optimal Solution of 
problem (P').  Consequently, the constraint t >  0 is equivalent to the constraint 
t -> 0, and thus problem (P')  turns out to be a linear program which can be solved 
by any algorithm for linear programs. On the other hand when the feasible region 
is unbounded,  t = 0 can occur, and when it happens, (P) has a supremum 
obtained along an extreme ray [23], [34]. 
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4. T h e  P a r a m e t r i c  L i n e a r  Frac t iona l  P r o g r a m  

Sensitivity and parametric analysis for a linear fractional problem with a bounded 
feasible region is similar to the one for linear programs [38]. However,  when the 
feasible region is unbounded,  some difficulties arise in studying the supremum of 
the problem (P) as a function of a parameter  because of case (2) in Section 2 
which cannot occur in linear programming. 

4.1. PARAMETRIZATION OF THE OBJECTIVE FUNCTION 

In this section we consider the parametrization of the numerator  in the objective 
function of a linear fractional program. We point out that a problem with a 
parameter  in the denominator  can be reduced to one in the numerator  by 
maximizing - 1/f(x) (assuming f ( x )  > 0). Let  us consider the following parametric 
problem: 

POBJ(0)  z(O) = sup [((c + Ou)rx + c o + Ouo)/(drx + d0) ] (5) 
x ~ = X  

for some (u, u 0) E R" +1. 
Now we describe a procedure for solving problem POBJ(0)  which is based on 

the algorithm MVM [38]. Following that, we will apply the Charnes -Cooper  
algorithm to the same problem. First, problem POBJ(0)  is solved by means of 
algorithm MVM. 

Let  x '  = (A~ lb ,  0) be the solution obtained by the algorithm. Clearly, x '  is an 
optimal solution of the linear subproblem PL(0) where 

PL(0) sup (c + Ou)rx + c o + Ou o 

x E X ,  d T x = d T x  ' .  (6) 

* T  T T A * - I A *  Let  c N, = c N, - CB,'i B, .'i N, ~ 0 be the vector of the reduced cost of x '  for PL(0).  

Two cases can occur: 
(1) 3" ~<0; then x '  is a maximum of POBJ(0);  

' ' = max{C'gj/d'Ni: 3'~ > 0} and (2) there exists an index k such that 3"~ > 0, cs]dNe 
yk = AB-1ANk ~< 0," in this case POBJ(0) has a supremum equal to C'Nk/d'Nk on 
the extreme ray from x'  along yk. 

Let  the stability set of vertex x '  denote the set of values of 0 such that x '  is a 
maximum or the supremum is attained on an extreme ray starting from x'. In 

t r t r order  to find the stability set of x ,  c N, 3', Co, CN' are considered as a function of 
the parameter  0. Such functions are denoted by c~(O), 3"(0), c~(0), C'N,(O ). Let  

H = { 0 : 3 " ( 0 ) ~ 0 } ,  H '={0:C~v, (0)<~0}.  (7) 

Clearly, H '  _D H. 
- If case (1) holds, H ~ �9 and for 0 @ H x '  is a maximum of POBJ(0)  with 

z(o) = c;(O)ld;. 
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t t ! 
If case (2) holds, let us consider the set H " =  {0: CNk(O)/dNk = max{cNj(O)/ 

t dNj: y}(O)>0}}; for 0 E H'(O)f)H"(O) the supremum is attained along yk 

with z(O) = CNk(O )/dNk. 

Let  H ' = { 0 : 0 ' ~ < 0 ~ < 0 " } .  We will solve problem PL(0*) where 0 * = 0 ' - e  
( 0 " =  0 " +  e), e > 0 .  Starting from x',  by means of one simplex iteration the 
optimal solution x* of POBJ(0*)  is obtained, x* lies on an edge of X and is not, 
in general, a vertex of X. We will find the best vertex (in terms of the value of the 
objective function) which belongs to the edge containing x*. Let  x" be such a 
vertex. The stability set of vertex x" is adjacent to the stability set of vertex x'. 

Clearly, the described procedure allows us to find the function z(O) through a 
vertex following examination. As regards to the properties of the paramatric 
function z(O), it is easy to prove that z(O) is a convex piecewise linear function 
[14]. The domain is the union of adjacent stability sets and hence convex, z(O) is 
piecewise linear since a stability set is the union of sets of type H and H" which 
are related to the same vertex of S. Thus z(O) is linear for 0 E H (0 E H")  since 
the denominator  is constant there. Convexity can be shown by verifying the 
defining inequality of convex functions. For details see [14]. 

As an alternative to the above approach, let us now apply the Charnes -Cooper  
transformation to the parametric problem POBJ(0).  Then the following paramet- 
ric linear program is obtained: 

f(O) = sup[(c + Ou)ry + (c o + Ouo)t ] 

C - C ( 0 )  Ay - bt = 0 ,  (8) 

d r y + d o t = l ,  y>~O, t>~O. 

C - C ( 0 )  is a standard parametric linear program and can be solved using the usual 
procedure for parametric linear programming. This method which is based on 
sensitivity analysis applied to reduced costs involves less operations than the 
modified Martos algorithm. 

If in the optimal solution (y ' ,  t ' ) ,  t' is greater than zero, then it is possible to 
transform the results into the space of variables x, namely x '  = y'/t'. This is not 
possible when t' = 0. In this case the above transformation cannot be used. Let  B'  
be the set of basic variables of the optimal solution of C-C(0 )  and 

fA [011 [] A ' =  1 - b  
d r do , YB '=AB 'l , u B , = A ~ .  do . 

Further ,  let t o = y~ /us ;  ~ = min{ys~: us; > 0} and set B = B'\{k}.  It is easy to see 
[12] that the supremum of z(O) is attained along the extreme ray starting from the 
vertex xe = ( Y B -  toUB)/to in the direction d e = - y s / y B ~ .  Clearly, these results 
allow us to determine the function z(O) by solving problem C -  C(0). 

E X A M P L E  1. Let  us consider the following numerical example 
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z(O) = s u p { I ( - 1  + O)x 1 + (5 - 2 0 ) X z ] / ( x  , + 2)} 

- x  l + x  2~<2,  x 1 - 2 x  z~<4 ,  

X 1 , X 2 ~ 0 . 

By using the C h a r n e s - C o o p e r  t ransformat ion  w e  obtain the following parametr ic  
LP:  

f (O)  = s u p { ( - 1  + O)y~ + (5 - 20)Y2} 

- -Yl  + Y2 -- 2 t  + Y3 = 0 ,  

Yl - 2Y2 - 4 t  + Y4 = 0 ,  

Yl + 2t  = 1 ,  

Y l ,  Y2, Y3, Y4, t ~ > 0 "  

The  opt imal  solution for  0 = 0 is given by the following simplex Table  I: 

Table I 

0 

- z  

t 

Y2 
Y4 

2 

- 5  

1/2 
1 
4 

Y1 Y2 Y3 Y4 t 
1 0 2 0 0 

- 1  0 - 5  0 0 

1/2 0 0 0 1 
0 1 1 0 0 
3 0 2 1 0 

Stability set: - 1  + 0 <~ 0, - 5  + 20 ~< 0 imply  0 ~ 1; z(O) = 5 - 20, 0 ~< 1 with the 

opt imal  solution (Yl = 0, Y2 = 1, t = 1 /2) .  In  the space of  the variables x we have 

(x 1 = 0, x 2 = 2). 
For  0 > 1 the reduced  cost of  variable Yl becomes  positive and Yl substitutes t in 

the basis. The  new Table  II  is the following: 

Table II 

0 

- z  

Yl 
Y2 
Y4 

1 

- 4  

1 

1 

1 

Yl Y2 Y3 Y4 t 
0 0 2 0 - 2  

0 0 - 5  0 2 

1 0 0 0 2 
0 1 1 0 0 
0 0 2 1 - 6  

/ 

Stability set: 2 - 20 ~< 0, - 5  + 20 ~< 0 imply 1 ~< 0 ~< 5 /2 ;  z(O) = 4 - O, 1 <~ 0 <~ 5 / 2  

with the opt imal  solution (Ya = 1, Yz = 1, t = 0). In the space of  the variables x we 

have t o = min{1/2}  = 1/2,  x 2 = 2, x 4 = ( 1 +  ( 1 / 2 ) 6 ) / ( 1 / 2 )  = 8, d B = ( - 1 ,  - 1 ) .  
For  0 > 5 / 2  the reduced  cost of  variable Y3 becomes  positive and Y3 substitutes 

Y4 in the basis. The  new Table  I I I  is the following: 
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Table III 

0 

- z  

Yl 
Y~ 
Y3 

- 3 / 2  

1 
1/2 
1/2  

Yl Yz Y3 Y4 t 
0 0 0 - 1  4 

0 0 0 5 /2  - 1 3  

1 0 0 0 2 
0 1 0 - 1 / 2  3 
0 0 1 1/2  - 3  

Stability set: 5 / 2 - 0 ~ 0 ,  - 1 3 + 4 0 ~ < 0  imply 5 /2~<0~<13/4;  z(0)=3/2, 
5 / 2 ~  < 0 ~< 13/4  with the optimal solution (ya = 1, Y2 = 1/2,  t = 0). In the space of 
the variables x we have t 0 = m i n { 1 / 2  , 1/6} = 1/6,  xl = ( 1 - ( 1 / 6 ) 2 ) / ( 1 / 6 ) = 4 ,  

x 3 = ( 1 / 2 +  ( 1 / 6 ) 3 ) / ( 1 / 6 )  = 6, d B = ( - 2 ,  - 1 ) .  

For 0 > 13/4  the reduced cost of variable t becomes positive and t substitutes Y2 
in the basis. The new Table IV is the following: 

Table IV 

0 - 2 / 3  

- z  2 /3  

ya 2 /3  
t 1 /6  

Y3 1 

Y~ Y2 Y3 Y4 t 
0 - 4 / 3  0 - 1 / 3  0 

0 13/3 0 1/3 0 

1 2 /3  0 1 /3  0 
0 I / 3  0 - 1 / 6  1 
0 1 1 0 0 

Stability set: 13/3 - 4 /30 <~ 0, 1 / 3 - 1 / 3 0 ~ < 0  imply 0>~13/4; z ( 0 ) = - 2 / 3 +  
2/30,  0/> 13/4 with the optimal solution (Yl = 2 /3 ,  Y3 = 1, t = 1/6) .  In the space 
of the variables x we have x1 = 4, x 3 = 6. 

The function z(O), depicted in Figure 1, is the following: 

I 5 - 2 0  0~<1,  

z(O) = ~ 4 -  0 1~< 0 ~ < 5 / 2 ,  

| 3/2  5 / 2 ~  < 0 ~< 13 /4 ,  
l - 2 / 3  + 2 / 3 0  0>113/4 .  

4.2. P A R A M E T R I Z A T I O N  OF T H E  R I G H T - H A N D  SIDE 

We now consider the following parametric linear fractional program: 

PRHS z(O) = sup (crx + co) l(drx + do) , (9) 
x~X(O) 

where X(O)={xER":Ax=b+Ob*,x>~O} for some b*ER m. We assume 
drx + d o > 0 Vx ~ X(O), VO. 

This problem was solved in [10] by using the fractional programming algorithm 

of Dinkelbach in which numerator and denominator are separated by a parame- 
ter. Neither in Martos' nor in Charnes-Cooper's  method such as parameter is 
needed. As in Section 4.1, we contrast the use of these latter two methods. 
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z[O) 

I i i 

I I I 

I I I 
| i 

1 5 / 2  13 /4  

Fig. 1. 

If we apply the Charnes-Cooper  transformation to problem PRHS we obtain 

f(O) = sup[cry + Cot ] 

C -  C -  RHS A y -  (b + Ob*)t = 0 ,  (10) 

d r y + d o t = l ,  y~>0,  t~>0. 

C - C - R H S  is a parametric linear program with the parameter  in the column of 
the matrix corresponding to the variable t. To solve such a problem is not easy. 
For  this reason we investigate the application of the algorithm MVM to problem 
PRHS instead. 

Given a basis Ao ,  let us define: 

,T ~ T -1 c~(O) + c~A~l(b + Ob*) 
C N ~ "  C N - -  caA 8 A N , = c O 
dN r= d r -  dr Z ~ l Z N ,  do(O)= do+ dr ZBX(b + Ob*) , 

xB(O) = A~lb + OA~lb * , 3'(0) = d~(O)c~v- c~(O)dN. 

The vertex associated with the basis A B is optimal if the following conditions 
hold: 

x~(O) >i0 (feasibility), 

3"(0) ~< 0 (optimality).  

The  supremum is attained on an extreme ray starting from the vertex xs(O ) if 
the following conditions hold: 

x~(O) >i O, 

3"Ao) > o ,  

AB1A~ <~O, 

CNk' /''aNk =max{c~/d'Nj: 3"j(O)>O} 
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Suppose that problem PHRS is solved by means of algorithm MVM for a given 
value of 0 and let A B be the basis obtained. 

If the vertex xB(O ) is optimal, then define 

H '  = (O:x~ (O)  I> 0 ) ,  H" = {0: 3"(O) ~< 0} ,  

H* = H'  fq H" = {O:O' <~O <~O"} . 

Clearly, for 0 E H* the vertex xB(O ) is optimal. For 0 ~"H* different cases can 
o c c u r :  

(1) feasibility is maintained while optimality is lost (i.e. x~(O)>i 0 while 3'(0) 
0); 

(2) feasibility is lost while optimality is maintained (i.e. xB(O ) J? 0 while 3'(0)~< 
0); 

(3) feasibility and optimality are lost (i.e. xe(O ) ~ 0 and 3"(0)~-0). 
In case (1) there are two possibilities: (i) the supremum is attained along an 

extreme ray from xB(O ) (3'k(O)> O, A~IA~  ~< 0) and nothing must be done; (ii) 
the new optimal solution is an adjacent vertex of xB(O ) which can be obtained by 
a primal simplex iteration. In case (2) the new optimal solution (if any) can be 
obtained by applying the dual simplex algorithm. In case (3) it is necessary to 
restart either feasibility or optimality and it is also necessary to maintain the 
optimality of level. This can be done by simplex iterations (dual or primal) until 
case (1) or (2) is obtained. 

If the supremum is attained along an extreme ray from the vertex xs(O), then 
define 

H '  = {0: xs(O ) >~ 0},  H " =  {0: c'u~/dut , = max{c'N/dNj: 3"j(O) > 0},  

H* = H '  A H "  = (0 :0 '<~0<~0  "} . 

Clearly, for O E H *  the extreme ray yk from xB(O ) is optimal. For O ~ H *  
different cases can occur: 
(4) feasibility is maintained and optimality is obtained (i.e. xB(O) >! O, 3"(0) <~ 0); 
(5) feasibility is maintained while optimality is lost (i.e. xs(O ) >! 0 while 3"(0)~- 

0); 
(6) feasibility and optimality are lost (i.e. x , ( O ) ~ O  and 3,(0)$0).  

In case (4) clearly x,(O) is an optimal vertex and nothing must be done. Case 
(5) is like case (1). Finally, case (6) is like case (3). 

The proposed procedure is able to determine the function z(O) for all values of 
0. 

E X A M P L E  2. Let us consider the following numerical example 

Z(O) = s H p [ ( - - X  1 -it- 5X2)/(X 1 Jr- 2)] 

- x  l + x  2 ~ < 2 + 0 ,  x 1 - 2 x  2 ~ < 4 - 8 0 ,  

X 1 , X 2 ~ 0 . 

First, we solve the problem for 0 = 0. We obtain: 
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T a b l e  V 

X 1 X 2 X 3 X 4 

N - 1 0  - 50 4 0 - 5  0 

D - 2  1 0 0 0 

x z 2 +  0 - 1  1 1 0 

x 4 8 - 60 - 1 0 2 1 

Then y(0)  = ( - 2 -  50, - 1 0 )  ~<0, H " =  { 0 : 0 ~  > - 2 / 5 } ,  xB(O ) = ( 2 +  0 , 8 -  60)/> 
0, H ' = [ - 2 ,  4/3] ,  hence H* = [ - 2 / 5 ,  4/3]. Then for O E H *  x ~  is 
optimal  and z(O) = (10 + 50) /2 .  

For  0 > 4 /3  we obtain Table VI: 

T a b l e  V I  

X 1 X 2 X 3 X 4 

N 22 - 290 0 0 3 4 

D 6 - 60 0 0 2 1 

x 2 - 6  + 70 0 1 - 1 - 1 

x 1 - 8  + 60 1 0 - 2  - 1  

Then y(O) = (26 - 400, - 2  - 50) ~< 0, H" = {0 :0  i> 13/20}, xB(O ) = ( - 6  + 70, 
- 8  + 60) t> 0, H '  = {0 : 0 ~> 4/3}, hence H* = {0 : 0 >I 4/3}. Then for 0 E H*x  1 = 
( - 8  + 60,  - 6  + 70) is optimal and z(O) = ( 2 9 0  - 2 2 ) / ( 6 0  - 6) .  

For 0 < - 2 / 5  it follows from Table V that for - 2 ~ < 0 ~  < - 2 / 5  the solution 
remains feasible while the reduced cost of variable x 1 is positive and the relative 

column is nonpositive. This implies that the supremum is reached along the 
following extreme ray: 

[X:]~-I2~t0]'q-Ill]x I with z ( 0 ) = 4 .  

For  0 < - 2  with a pivot transformation in Table V we obtain Table VII.  

T a b l e  V I I  

X 1 X 2 X 3 X 4 

N - 2  - 0 0 4 - 1  0 

D 0 0 1 1 0 

X 1 

X4 

- 2 - 0  

6 - 70 

1 - 1  - 1  0 

0 - 1  1 1 

Then y(0)  = ( - 5 0  - 2, -2 ) ,y2(0  ) > 0 for 0 < - 2 ,  XB(O ) = (--2 -- 0, 6 -- 70) ~> 0, 
H '  = {0 : 0 ~ - 2 } ,  H*  = H ' .  Thus for 0 E H* the supremum is reached along the 
following extreme ray: 
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. . . .  sup 50/6[ 

-2 -2/5 4/3 

Fig. 2. 

Ixl]=i -2-0] f 1] X4 6 - - 7 0  + 1 x2 with z ( 0 ) = 4 .  

The function z(O) is now completely described. In Figure 2 z(O) is depicted. 

The  function z(O) is quasiconcave as it was shown for problem PRHS in general 
in [101 . 

5. Conclusion 

Parametr ic  linear fractional programming with an unbounded feasible region 
poses some difficulties not arising in the bounded case. Two types of algorithms 

have been applied to two kinds of parametr ic  fractional programs.  It  turns out 
that  a procedure  based on the C h a r n e s - C o o p e r  transformation is more  suitable in 
case of a parametr ized objective function whereas a procedure based on the 

modified Martos algorithm is preferable  in case of a parametr ized right-hand side. 
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